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Preface

Interest in a spacecraft's orbital trajectories

about the Martian moon, Phobos, has arisen with renewed U.S.

and Soviet emphasis on exploration of the Martian system.

The Report of the National Commission on Space, appointed by

President Reagan and chaired by Thomas Paine, recommended a

thorough, efficient and systematic progression towards Mars

(11:193) to give NASA focus and revive a sagging U.S. space

program. The report recommends unmanned probes,

penetrators, and sample return missions to the Moon, to Mars

and its moons, to some promising asteroids, and to the outer

planets and their moons followed by automated mining and

materials processing plants, and eventually by manned

explorations and human outposts. The Planetary Society is

pushing for the U.S. to make an official declaration to

strive towards human exploration of Mars (12:3). The

Soviets have already stated they are pursuing the

possibility of landing a man on Mars (11:161; 6:14-15).

Soviet records for long duration space flight set in their

earth orbiting space station provide groundwork for a long

duration manned flight to Mars. The Soviets currently have

two spacecraft on their way to the Martian system and have

another Mars mission scheduled for 1994 (6:15; 2:16; 4:392).

The next approved U.S. mission to Mars, the Mars Observer,

is scheduled to launch in 1992 (4:392).

ii



The two Soviet spacecraft, Phobos I and Phobos II,

were launched July 7 and July 12 of 1988 and should be

arriving in the Martian system near the end of January 1989

(4:392). The 480 million dollar (10:9b) mission includes a

lander carried on each spacecraft and Phobos II carries a

surface hopper intended to land and probe the surface of

Phobos (4:392-393: 5:183). With some success, Phobos could

"become the fourth extraterrestrial body on which spacecraft

from earth have landed."(4:392) On September 2, a Soviet

ground controller sent Phobos I an incorrect command causing

loss of attitude control of the spacecraft and its solar

panels (5:183). With the solar panels improperly aligned,

there was not enough energy to sustain the transmitter.

* Soviet officials are hoping the solar panels will get

aligned with the sun and restore power. Early Soviet

missions to Mars, all before 1974, did not meet with great

success (4:392). They either crashed, missed their target

or stopped transmitting data early.

The last earth vehicles to go to Mars were the

successful U.S. Viking orbiters and landers which reached

the planet in the summer of 1976 (4:392). Viking flybys of

Phobos provided the estimate of its gravitational parameter

used in this study (13:35).
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Abstract

Orbital trajectories obtained from numerical

integration of over two thousand sets of initial conditions

for equations of motion of a spacecraft in the Mars Phobos

system are examined in a Phobos centered rotating coordinate

frame. The equations of motion, simplified with the choice

of the system of units, are integrated using a Hamming

fourth order predictor corrector algorithm. The

trajectories were examined by plotting the position of the

spacecraft and by listing of the state vector values at each

crossing of the X, Y, and Z axes.

* --,As initial velocity and altitude are varied,

trajectories in the orbital plane of Phobos about Mars

follow an orderly pattern. A range of initial velocities

resulted in orbital trajectories about Phobos at a given

altitude. Near the center of this range of initial

velocities, termed the orbital window, is a unique initial

velocity that resulted in a closed periodic orbit (at a

given altitude) in the Phobos centered rotating coordinate

frame. Initial velocities greater than or less than the

velocity needed for a closed periodic orbit result in

trajectories that move away from the periodic orbit in a

predictable manner and eventually leave the orbit window.

0
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4Trajectories outside the orbit window either collide with

Phobos or leave the vicinity of Phobos.

Trajectories out of the orbital plane of Phobos

about Mars are more complex, three dimensional (helical

shaped) paths that do not remain in an inclined plane, but

do exhibit some order. Again there is a range of initial

velocities that fall within an orbital window. No orbital

trajectories were found that remained in a plane which

contained Phobos and was inclined to the orbital plane of

Phobos about Mars. No closed periodic orbits were found

outside the orb.tal plane of Phobos about Mars.
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NUMERICAL STUDY OF ORBITAL TRAJECTORIES ABOUT PHOBOS

I. Introduction

Background

Phobos is the larger of two small moons orbiting

Mars. Phobos has been described as a potato shaped rock

(4:392) and has been modeled mathematically as a triaxial

ellipsoid by Werner (13:1). Phobos is a gravity gradient

stabilized satellite with its long axis, length of 27 ± 1 Km

(13:35), maintained in a Mars pointing orientation by the

gravity gradient torques. Phobos's length along the axis in

its direction of motion is 21.6 ± 1.4 Km and its length

along the axis out of its orbit plane is 18.8 ± 1.4 Km

(13:35). The gravitational parameters for Phobos and Mars

3 2are 6.6e-4 and 42826.32 Km3/sec respectively (13:35).

Because the mass of Phobos is about 65 million times less

than the mass of Mars, Mars is the dominating force on a

spacecraft orbiting in the Mars Phobos system. Phobos is in

a circular orbit 9378 Km from the center of Mars and

completes an orbit in 7.65 hours (13:35).

Werner used Hamiltonian mechanics to develop

restricted three body equations of motion for a spacecraft

in orbit in the Mars Phobos system (13:1-12). He then

searched for and found closed periodic orbits about Phobos

in the plane of Phobos's orbit about Mars. He showed these

1



were unstable orbits and suggested the existence of

bifurcation regions caused by nearby inclined orbits but

found no inclined periodic orbits that did not pass through

Phobos (13:19-20). A bifurcation is "where a sudden change

in behavior occurs as a parameter passes through a critical

value" (8:317). It was conjectured that the equations of

motion, being nonlinear, could give rise to a variety of

interesting orbital trajectories as some initial conditions

or control parameters are varied.

Werner's numerical exploration of his equations of

motion was limited to finding closed periodic orbits in the

plane of Phobos's orbit about Mars and discussing their

stability using Floquet theory. Additional work was

*necessary to classify a broader spectrum of the possible

orbital trajectories about Phobos both in and out of the

plane of its orbit about Mars.

Problem Statement

The intent of this research effort is to begin with

Werner's equations of motion, develop and apply computer

software to explore, examine, and classify the possible

orbital trajectories near Phobos both in and out of its

orbital plane and to look for possible bifurcations.

2



Approach

The general approach was to numerically integrate

the equations of motion beginning with a large number of

different sets of initial conditions chosen in a way that

would yield a set of orbital trajectories adequately

representing all the possible trajectories. Orbital

trajectories in the plane of Phobos's orbit about Mars were

obtained by integrating over 1500 different sets of initial

conditions. Orbital trajectories out of the plane of

Phobos's orbit about Mars were obtained by integrating over

700 different sets of initial conditions.

The trajectories obtained by these numerical

integrations were examined using plots and listings

extracted from the state vector time history. Plots for a

few hundred of the trajectories were produced from samples

of the state vector. The state vector was sampled at

approximately 44 second intervals to keep the size of the

plot files small while using enough data for the plots to

appear continuous. Listings produced for all of the

trajectories displayed the state vector at each crossing of

the X, Y, or Z axes, the period about Phobos in the XY

plane, and messages to inform when a closed orbit was

completed, when a collision occurred, or when the

distance from Phobos exceeded the Mars-Phobos distance.

The set of possible trajectories were separated into

those that remained in Phobos's orbital plane about Mars,

0
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and those that did not. These were further divided into

trajectories that circled Phobos at least once (orbital) and

those that did not.

Closed periodic orbits about Phobos were special

cases of the orbital trajectories that were investigated. A

closed periodic orbit was one that later returned to the set

of initial conditions for position and velocity. A closed

orbit was detected by the software if the state vector

returned to the initial conditions to within a set of

tolerances after circling Phobos at least once. This set of

tolerances was defined as the set containing the largest

change in each state variable encountered during any

integration step since the beginning of the integration for

*a particular trajectory.

XY Planar Trajectories

The initial values of the Y coordinate (altitude)

and the X velocity are varied to generate families of

orbital trajectories in the XY plane (the plane of Phobos's

orbit about Mars). All the other initial conditions are

taken to be zero. With these initial conditions, the total

spacecraft velocity is simply the initial value of the X

velocity. Therefore, the initial value of the X velocity

for a given initial +Y coordinate is chosen as the control

parameter to generate orbital trajectories about Phobos in

the XY plane. Zero values for the initial Z coordinate and

the initial Z velocity restrict the motion of the satellite

4



to the XY plane since each term in the equations for Z and Z

contains a Z or a Z. The choice of zero initial values for

the X coordinate and the Y velocity makes the initial

velocity of the satellite simply the chosen control

parameter, the X velocity, which is then tangent to the

trajectory. Choosing the initial conditions this way

enabled thinking of the selection of an orbital trajectory

as a choice of the kinetic energy (determined by the choice

of the X velocity) and the potential energy (determined by

the choice of the Y coordinate). Then, the problem of

selecting a particular type of orbit about Phobos could be

related to the simpler two-body problem of orbit selection.

Given a particular altitude in the two-body problem, a

certain velocity generally defines a closed orbit. However,

in the restricted three-body problem, given a Y coordinate

(altitude), selection of the X velocity defines an orbital

trajectory which in general, is not a closed path.

Three Dimensional Trajectories

To generate trajectories out of the XY plane, the

..nitial values of the Z coordinate and the X velocity were

varied for a given initial Y coordinate value. Again, since

the initial values of the Y velocity and the Z velocity were

zero, the total spacecraft initial velocity was simply the

initial X velocity which again could be treated as the

control parameter. In an attempt to find indications of a

5



bifurcation, the initial Y coordinate of 20 Km was chosen

because it fell within a region described as h possible

bifurcation region by Werner (13:19).

Overview

The introduction presented in this chapter gives

some background information leading to the problem

statement, then gives the general approach taken to solve

the problem.

Chapter II begins the problem development with

Werner's restricted three body equations of motion for a

spacecraft in the Mars Phobos system. The Phobos centered

rotating coordinate frame of reference used for these

equations is described. A system of units for mass,

length, and time is chosen which simplify the equations of

motion.

Chapter III describes the method of solution. To

solve the problem of describing the possible orbital

trajectories about Phobos, software was needed to enable

examination of a large number of numerical solutions to

equations of motion. The software developed to integrate

the equations of motion from many sets of initial conditions

for the spacecraft's position and velocity is provided in

the appendix.

The results are presented in Chapter IV using graphs

that divide the solution space into several categories

0
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representing different outcomes for the trajectories

obtained from the integrations. A number of plots are

presented showing typical trajectories that fall into these

categories. The results are discussed in three sections

that separate the trajectories into those that result in

closed periodic orbits in the XY plane, XY planar

trajectories in general, and three dimensional trajectories.

Chapter V presents conclusions about practical

implications when orbiting a spacecraft about Phobos which

are drawn from the results of Chapter IV. They include

discussion of the amount of precision in control of the

state vector needed and the amount and frequency of velocity

adjustments needed to stay in the orbit window.

0 07



II. Problem Development

The motion of a spacecraft of negligible mass

orbiting in the Mars Phobos system, a restricted three body

problem, was described mathematically by Werner (13:11-12).

He modeled the attraction due to the irregular shape of

Phobos using the potential energy field of a homogeneous

triaxial ellipsoid rather than a sphere which is usually

treated as a point source. Using Hamiltonian mechanics, he

derived the following equations of motion for the system.

X = P. + Q(Y - D) (1)

Y = PY - QX (2)

Z = P" (3)

P. = QP., - GMo(X/D3 - 3XY/D 4 + 3R 2X/2D8 ) - GM 1X/R
3

+ 3GIX/4RO - 3GX/4R[(5X2 - 2R 2 )(I-2I)

+ 5Y 2 (I - I,,,)+ 5Z 2 (I - 21.)] (4)

2 2P, = - OP, + GMo[1/D2 - 4Y/D3 - 3(YR2 - DR -

2DY 2 )/2D'] - GM1 Y/R
3 + 3GIY/4R' -

3GY[(5Y2 - 2R 2 )(I - 2 I,) + 5X2(I - 21.) +

5Z2 (I - 21..)]/4R" (5)

8



P= _ GMo(Z/D3 - 3YZ/D 4 + 3ZR2 /2DO) - GM1 Z/R 3 +

3GZI/4R' - 3GZ[(5Z2 - 2R2 )(I - 21.) +

5X 2 (I - 2I,) + 5Y 2 (I - 2Ivv)]/4R 7 (6)

Where X, Y, Z are the coordinates of the spacecraft position

(altitude) and X, Y, Z are the components of the spacecraft

velocity expressed in the coordinate frame described below.

P, P.., and P. are the conjugate momenta (9:172-173).

The other terms used in eqs (1)-(6) are

P = angular velocity of XYZ coordinate frame

R2 = X2 + y 2 + Z2

M. = mass of Mars

M, = mass of Phobos

G = universal gravitational constant

D = Mars to Phobos distance

I = I,,, + IVY + I.. = sum of the principal

moments of inertia of Phobos

The principal moments of inertia of a homogeneous

ellipsoid are (7:501)

I.=. M,(b 2 + c)/5 (7)

I. = M1 (a
2 + c')/5 (8)

I = M,(a 2 + b2 )/5 (9)

Where

a = half length of Phobos along X axis

b = half length of Phobos along Y axis

c = half length of Phobos along Z axis

9



The coordinate system for eqs (1)-(6) is a rotating

cartesian system with the positive Y axis always pointed

towards Mars and the positive X axis pointed in the

direction of Phobos motion in its orbit about Mars. Figure

I shows Mars and Phobos in the XY plane. The size of Phobos

is scaled up 10 times to make it just visible. The Z axis

points out of the plane of the orbit of Phobos (out of the

page) forming a right-handed coordinate system.

c J
//

" 1 I I

Mars'
j: 2 1

- -_, Phobos

X AVS
PHQWS MA, W

Figure 1. Phobos Centered Rotating Coordinate System
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The choice of the system of units generally used

with restricted three body problems allows some

simplification of the equations of motion. The mass unit is

defined by letting the sum of the masses of the two primary

bodies be equal to I mass unit (M.U.). The unit of length,

1 distance unit (D.U.), is the distance between the two

primaries (9378 Km). The time unit (T.U.) is chosen so that

the gravitational constant G is equal to 1. This happens

when the period of the two primaries in their orbit about

each other (7.65 hours) is equal to 2n T.U. One T.U. is

then equal to 4383 seconds (about 1.2 hours). The angular

velocity, Q, of the coordinate frame is then 1 radian/T.U.

With these units, and letting

Ii = -I. + ivy+ I.

I2 = I.- IV + I.

13 = I. + IV- IZ

where the principal moments of inertia are calculated using

eqs (7)-(9) with the just defined units for the mass and

length terms, Eqs (1) - (6) simplify to

X = P. + Y - 1 (10)

Y = P', - X (11)

Z = P. (12)

P. = P. - MO(X - 3XY + 3R X/2) - M1X/R' + 31X/4R' -

3X[(5X'- 2R*)I1 + 5Y 2 I2 + 5Z 213 ]/4R
7  (13)

11



Py = - P,. + Moi1 - 4Y - 3(YR2 - R 2 - 2Y 2 )/2] - M1Y/R
3

+ 31Y/4R' - 3Y[(5Y 2 - 2R 2 ), 2 + 5X 21 1 + 5Z2 13]/4R' (14)

Pw = - Mo(Z - 3YZ + 3ZR 2/2) - MZ/R3 + 3ZI/4RO -

3Z[(5Z 2 - 2R 2 )13 + 5X
211 + 5Y 212]/4R

7  (15)

0
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III. Method of Solution

Eqs (10)-(15) are the coupled nonlinear differential

equations to integrate to get the path of a spacecraft in

the Mars Phobos system. The integration is performed by the

FORTRAN program listed in the Appendix. Eqs (10)-(15)

appear in he subroutine "RHS.for", called by subroutine

"Haming.for", a fourth order predictor corrector integration

algorithm. The main program, "Phobos.for", reads a set of

initial conditions and the length of time to integrate from

an input file, "IC.dat". The program integrates the

equations of motion until the trajectory terminates in a

collision with Phobos or Mars, exceeds I D.U. from Phobos,

or the specified length of time is reached. Then a new set

of initial conditions are read from the input file and the

program integrates again and again until the end of file is

read from "IC.dat".

The program types selected information to the screen

(which can be saved in a log file) and writes the state

vector (position and velocity) and the elapsed time to data

files if plots are desired. The information typed to the

screen includes a notice when a coordinate is passing

through a value of zero, the rate of change of that

coordinate, and the value of the X coordinate (or the Y

coordinate if X is passing through zero). Also typed to the

screen are the time to complete each orbit, the orbit count,

13



and a message to indicate the reason for early termination

of the integration if needed.

The two options to write the state vector and

elapsed time to data files allows the data to be plotted

using any plotting software that plots columns of data

against another column (like a spreadsheet). The first

option, to write the state vector and the elapsed time to an

output file named "state.dat;n" each .01 T.U. (43.83 sec),

enabled the plotting f the orbital trajectories. The

second option, to write the same information to a file named

"section.dat;n" each time the trajectory crosses the Y = 0

plane, is intended to produce plane section plots.

The integration step size was chosen large enough so

that the computer run time for a group of trajectories was

reasonably short, yet small enough so that a smaller step

size wouldn't significantly change the output state vector

or the accumulated period of an orbital trajectory. A

significant change in the state vector was one that was

larger than the largest change encountered during any

integration step for the orbit. A significant change in the

orbital period was one that was larger than the step size

chosen. The choice of 0.0001 T.U. (.4383 seconds) for the

step size accomplished this goal. A 10 T.U. trajectory

would run in about a minute. Using a 0.00001 T.U. step size

didn't change the results but took much more computer time.

A closed orbit is detected by the software when the

14



state vector returns to the initial conditions within an

amount equal to the largest step size of the state vector

during the integration. Because that step size depends on

the integration time step, a small time step is desirable.

The time renorted for the orbital period also depends on the

step size. The chosen step size, less than C.5 conds.

makes the reporting of the period to the nearest second

simpler and more convenen. than a larger step size which

would have required some interpolation Letweer steps to

to that accuracy.

The trajectories are not allowed to pass through the

.of PObos or Mars. The position of the spacecraft

;s c--ked each step of the integration to ensure it falls

o e the equation of an ellipsoid centered on the origin

w t;. Pobos s dimensions. The integration is stopped if the

. .....f a acecraf falls inside the ellipsoid for

three reasons. First, the equations of motion are no longer

';va.id inside the urface of Phohos because the potential

e:.ergy expression used to develop the equations is different

rn;4-e tie e Ipoid (3:98-107). Second, numerical

diffirulties can arise if the position of the spacecraft is

* ear the origin CR approaching zero) because the equations

are full of terms divided 'y R. Th;,d, the sacecraft

c rashes into P-obos and the fIight is over. The position of

'he spacecraft is also checked to ensure it remains outside

a spher s- with a Mars radius rcentered on 7 ecquals I A.

15



because that also represents an undesirable trajectory that

crashes into Mars.

No trajectories were encountered that ended in

collision with Mars because all the trajectories considered

were near Phobos and therefore had plenty of orbital

velocity about Mars.

16



TV. Results

Closed Periodic Orbits in the XY Plane

Werner found closed periodic orbits are possible in

the XY plane from near the surface of Phobos to beyond 5000

Km (13:23). With proper selection of the initial X velocity

(the chosen control parameter), a closed orbit in the XY

plane can be obtained for any practical altitude. All these

closed planar orbits proceed in a clockwise direction as

seen looking down the +Z axis. Figure 2 shows some closed

periodic orbits about Phobos with Y axis crossings at 20,

40, 60, 80, 100, 125 Km altitude.

Figure 3 shows that for periodic orbits the value of

* the X velocity is generally positive (spacecraft velocity

greater than Phobos velocity) for Y greater than zero

(closer to Mars) and is always negative (spacecraft velocity

less than Phobos velocity) for Y less than zero (farther

from Mars). This is the expected result for a spacecraft in

a purely two-body orbit about Mars. The velocity of the

orbit decreases with increasing distance from Mars as

kinetic energy is traded for potential energy. The values

of the X velocity for orbits with higher altitudes about

Phobos decrease some because they are in lower energy

elliptical orbits about Mars than the circular orbit of

Phobos about Mars. The result is the bowed look of the plot

in figure 3. Orbits in the opposite direction

17



125 m
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100Km
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D. 008 /

0.004

D -04

20-K

X-0.002

-0.01?

-0.01 -0.008 -0.006 -0.004 -0.002 0 0.00D2 0.004 0.005 0. 008 0.01

X AXIS (D.U.)

Figure 2. Closed Periodic Orbits About Phobos in XY Plane



Periodic Orbits About Robos

J. 124

012
0.084

0.06
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x
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Figure 3. X Velocity for Periodic Orbits in the XY Plane
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(counterclockwise) are not found and are unlikely because

Mars gravity and the resulting orbital motion about Mars

dominates even when fairly close to Phobos. Figure 4 shows

for periodic orbits, the Y velocity must be greater than

zero (moving closer to Mars) when X is negative (spacecraft

behind Phobos in Mars orbit) and the Y velocity must be less

than zero (moving away from Mars) when X is positive

(spacecraft ahead of Phobos in Mars orbit).

Using figures 3 and 4, given any set of X and Y

coordinates, the components of the spacecraft's velocity

needed in the X and Y directions to achieve a closed

periodic orbit can be approximately determined. The choice

of the particular X velocity along the width of the bow in

figure 3 for a given Y value depends on the altitude of the

orbit about Phobos.

With the initial Y velocity set to zero, the initial

X velocity needed to produce a closed periodic orbit at a

desired Y altitude is plotted in figures 5-7. Figure 5,

which shows the initial values of the X velocity for orbits

near Phobos, reveals a noticeable bend in the curve around a

Y altitude of about 20 Km. The slow bend in the line of

periodic orbits around the 20 Km Altitude may be related to

the appearance of the additional non-zero pair of Poincar6

exponents found by Werner at altitudes near 20 Km (13:23).

Figure 6 extends the data out to 900 Km altitude and appears

almost linear. Figure 7 extends the data further to 5500 Km

* and clearly shows the nonlinearity of the data.

20



* Per i odic Orbits About Phobos
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The initial X velocity, X ,, needed to generate a

periodic orbit at a given Y altitude near Phobos varies

nearly linearly and can be approximated by a linear

expression given by

X,(m./s) = .44 Y(Km) + 1.2

After a second guess for the correct initial X velocity for

a periodic orbit, a few (one or two) simple linear

interpolations quickly converges on the correct value. The

interpolation is accomplished by adjusting the initial X

velocity to eliminate the difference in the first two X axis

crossings for the trajectories obtained from the integration

of the previous two guesses.

Although time is not explicit in the equations of

motion, the orbital period of a spacecraft in a closed

periodic orbit about Phobos is of interest. The orbital

period is obtained after the integration of the complete

orbit path and is the result of summing the individual

integration time steps. The orbital period of orbits about

Phobos increases rapidly from 7310 seconds (about 2 hours)

for orbits at 15 Km altitude to 10240 seconds (almost 3

hours) at 50 Km altitude. Figure 8 shows a plot of the

orbital periods for closed periodic orbits in the XY plane

from 15 Km to 200 Kin and shows a drastic change in slope

around 50 Km. Above 50 Km altitude the periods of the

orbits are about 3 hours and increase slowly with increasing

altitide. Figure 9 extends the plot of orbital periods out
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to 5500 Km and shows the slowly increasing trend. The sharp

bend (big decrease in slope) around 55 to 100 Km or 10300

second period is where Werner found an additional non-zero

pair of Poincare exponents (13:23).

Werner found the initial Y coordinates (altitudes)

needed to produce closed periodic orbits in the XY plane

with orbital periods in increments of 100 seconds beginning

with 8200 seconds and ending with 11500 seconds (13:23).

The large jump in altitude he shows from 105 Km with a 10400

second period to 1284 Km with a 10500 second period shows

the wide range of altitudes that have approximately the same

orbital period as seen in figures 8 and 9.

Figure 10 shows how the orbital periods of the

closed periodic orbits in the XY plane found by this study

compares to those found by Werner. Because Werner's data

are given by incremental period and the data in this study

are given by incremental altitude, Werner's data are

adjusted by interpolation to give periods at incremental

altitudes. There is some disagreement (13% or less) in the

data for orbits close to Phobos. This may be due to

differences in the details of the numerical integration such

as the time step used or due to numerical round-off

differences arising from the different magnitudes of the

numbers resulting from different choices for units of

measure. The agreement is very good for orbits beyond 50 Km

altitude.
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XY Planar Trajectories

* Figure 11 is a map of the type of trajectories

obtained by varying the initial X velocity (kinetic energy)

for a given Y altitude (potential energy) . The orbital

trajectories that do not form a closed orbital path about

Phobos eventually either collide with Phobos or leave the

vicinity of Phobos (escape). In either case, the spacecraft

can circle Phobos not at all, once, twice, or more times

before collision or escape. The number of orbits about

Phobos before collision or escape is related to how close

the initial value of the X velocity is to the value needed

for the periodic orbit at that altitude.

Figure 1i shows there are three regions of escape

velocities. A spacecraft beginning at a Y coordinate with

an initial X velocity that falls in any one of these three

regions will leave the vicinity of Phobos without circling

Phobos.

Figure 11 also shows three regions of velocities

that result in collisions with Phobos before completing an

orbit about Phobos. One of these regions is much narrower

than the other two. It appears to be a sliver split from a

larger collision region by an escape region which appears

only at altitudes above 40 Km.

The remainder of the area on Figure 11 represents

trajectories that circle Phobos at least once and is called

the orbit window. The line of velocities for closed
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periodic orbits of Phobos is at the center of the orbit

window. The orbit window is narrow at low Y altitudes but

expands as the altitude increases.

Two notable rapid expansions of the orbit window

occur that stand out from the general expansion trend. The

first is between Y altitudes of 19 and 25 Km. The slope of

the left-hand boundary of the orbit window is greater than

900 between 19 and 20 Km. The slope of this same boundary

-s less than 900 between 23 and 24 Km. Assuming the

boundary is continuous, the slope must be 900 (infinite) at

some Y altitude between 20 and 23 Km. The second rapid

expansion of the orbit window is between 50 and 60 Km. The

slope of the left-hand boundary of the orbit window in this

range appears to approach infinity also. These two ranges

of altitudes correlate with the two regions where Werner

found the additional non-zero Poincar6 exponents and

suggested they indicated the existence of bifurcation

regions in the solution space of the equations of motion

(13:19-20). They certainly signaled the existence of these

two ranges of infinite slopes.

Figure 12 shows orbital trajectories beginning at a

Y of 20 Km altitude with initial X values of -4, -2, 0,

2, 4, 6, 8, and 10 m/s which are all less than the velocity

needed for a periodic orbit. The trajectory with an initial

X of - 4 m/s escapes and falls in the first escape region

shown in Figure 11. The rest of the trajectories in Figure
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Figure 12. Initial Velocities Less Than Closed Periodic
Orbit Velocity

12 all collide with Phobos without circling the moon. These

trajectories all fall in the first collision region shown in

Figure 11.

Figure 13 shows trajectories beginning at a Y of 20

Km altitude with velocities of 14, 16, 18, 20, and 22 r/s

which are all greater than the velocity for a periodic

orbit. The trajectory that begins with an initial velocity

of 22 rn/s just barely misses Phobos then escapes. This

trajectory is just over the boundary into the third escape

region identified in figure 11. The rest of the

trajectories in figure 13 are in the third collision region

(counting from left to right) shown in Figure 11.

Values of the initial X velocity greater than X.,

resulted in orbits whose X axis crossing, shifted right

3
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(increased) by increasing amounts until the orbit either

collided with Phobos or escaped after one or more orbits.

Figure 14 shows an orbital trajectory about Phobos

that begins at a Y altitude of 20 Km with an initial X

velocity of 12 rn/s. This velocity is slightly more than the
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initial velocity needed for a periodic orbit at that

A t cde. The 4rajectory ends in a collision with Phobos

;After fcur orbits.

Figure 15 shows an orbital trajectory about Phobos

that begins; at a 7 altitude of 90 Km with an initial X

velocity of 44 m,'s. This velocity is a little more than the

initial X velocity needed for a periodic orbit at that

altitude. This time, the spacecraft escapes after four

o1'bits. After the trajectory stepped over Phobos, the

increase in the X axis crossings continued but by decreasing

amounts until the trajectory appears to orbit a point ahead

of Phobos in its orbit about Mars.

Values of the initial X velocity less than X.

resulted in orbits whose X axis crossing, X,, shifted left

(decreased) by increasing amounts until the orbit eitler

collided with Phobos or escaped. If the change in X, was

larger than the X diameter of Phobos, the trajectory could

step over Phobos and escape after completing one or more

orbits of Phobos. Then, the shift left in the x axis

crossings continues but by decreasing amounts until the

trajectory appears to orbit a point behind Phobos in its

orbit about Mars.
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Three Dimensional Trajectories

Figure 16 is a map of the type of trajectories

obtained by varying the initial X velocity (kinetic energy)

and the initial Z altitudes with a fixed initial Y altitude

of 20 Km. The line at Z equals zero represent the

trajectories in the XY plane at a Y altitude of 20 Km as

shown in the XY plane trajectory map in Figure 11.

37



-- EscapesO
• , [ ' I Orbit

Collides Escape
Escapes

< .----- Orbit Window ---- >'

Collides Collides

% Periodic,

Orbit

<----.Orbit Window->-

Collides
I Orbit Escapes

E, ce Escape..Escapes ,

Figure 16. Trajectory Map '.l e " ' P e of Phobos's

0



The trajectory map shown in Figure 16 is symmetric

about the line Z equals zero. There are two regions where

the trajectories end in collision with Phobos before

completing an orbit. These two collision regions give a

third J;m~cosan to the collision regions shown in Figure 11

and ciscussed with the XY planar trajectories. The two

regions are ellipsoid shapes with the larger ellipsoid

corresponding to the smaller X velocities. The other

regicns, two escape regions and the orbit window,

represented at a Y altitude of 20 Km in the XY planar

trajectory map of Figure 11, are also represented in Figure

16 and thus given a third dimension.

The closed periodic orbit at the center of the three

dimensional orbit window lies on a line in the XY plane

trajectory map of Figure 11 but appears to be a singular

point in the trajectory map of Figure 16. No closed

periodic orbits are found other than the one at Z equals

zero.

Figure 16 shows a region of trajectories that orbit

once before escaping. These trajectories appear at Z

a7ititudes greater than 30 Km. This region is connected to a

similar region that appears in the XY plane trajectory map

of Figure 11 at Y altitudes above 30 Km.

Figure 16 also shows a narrow collision region

appears at Z altitudes above 85 Km with an initial X

velocity of 5 m s.
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Figure 17 shows an orbital trajectory projected or

the XY plane that begins with an initial Y of 20 Km, an

initial : alttude of 10 Kim, and an. initial X velocity of 12

m's. The trajectory ends in a collision with Phobos after

five orbits. Figure 18 snows the Z amplitude versus time

for this trajectory increases as does the period of the

osc- 1.'ati4or.

Figure 19 shows an orbital trajectory projected on

the XY plane that begins with an initial Y of 20 Km, an

initial Z altitude of 60 Km, and an initial X velocity of 8

ms. The trajectory ends in a collision with Phobos after

seven orbits. Figure 20 shows the Z altitude versus time

for this trajectory has a period of about 2rT T.U. which is

characteristic of its orbit about Mars.
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Conclusions

Mars gravitational potential is by far the dominant

force acting on a spacecraft orbiting in the Mars Phobos

system even for orbits close to Phobos. It can be said that

orbits about Phobos are merely orbits about Mars that happen

to go around Phobos with some perturbation effects due to

the gravitational potential of Phobos.

If a spacecraft is to orbit Phobos, it must control

its velocity to stay inside the orbit window. The window is

small at low altitudes, only a few meters per second wide,

but widens as the altitude increases.

Closed periodic orbits are available near the center

of the orbit window in the plane of Phobos's orbit about

Mars. A spacecraft whose velocity can be controlled to

within a few cm/s can achieve these closed periodic orbits.

Technically, these orbits are unstable because small errors

in the state vector cause the spacecraft to drift away from

the closed periodic solution. But the drift rate is slow

for orbits near the center of the orbit window. Because

this drift rate is slow, the closed periodic solution is a

solution that can represent a practical stability similar to

the practical stability exhibited by a bullet spinning about

its least moment of inertia axis. Although the bullet is

technically unstable spinning about that axis, the time of

flight is small enough compared to the amplitude of the
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instability that it is insignificant. For a spacecraft in

orbit about Phobos, small velocity adjustments (a few meters

per second) provided at relatively infrequent intervals, 12

hours or longer depending on altitude, can keep the

spacecraft in the orbit window.

No closed periodic orbit solutions were found

out.ide of the plane of Phobos's Orbit about Mars.

Nevertheless, a spacecraft can be maintained inside the

three Cimensional orbit window with relatively small and

infrequent velocity adjustments by picking regions away from

the edges of the window.

The solution space of trajectories about Phobos is

well behaved and predictable. The search for bifurcations

and unexplained chaotic behavior failed. The two regions

where Werner suggested the appearance of additional Poincar6

exponents indicated possible bifurcation regions (13:19-20)

were found to correlate with two rapid expansions of the

orbit window.
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Appendix

c Program Phobos written by Bob Teets Summer 1988
c integrates a version of Werner's equations of motion for
c a massless satellite in orbit about Phobos. The equations
c are modified by the introduction of the system of units
c customary for the three body problem. The program allows
c for output of the state vector to data files for plotting
c or simply screen output which can captured in a log file
c if desired.

common /ham/' t,s(6,4),ds(6,4),err(6),n,h
double precision rO(6),r(6),dr(6),drm(6)
double precision t,s,ds,err,h,xtu
logical closed,plot,plane
character*1 ans
type 10

10 format(5x,'Do you want orbit plots ? ',$)
accept 15,ans ! If so, the state vector

15 format(al) will be written to a
file state.dat;n, where

if((ans.eq.'y').or.(ans.eq.'Y')) then
version, n, corresponds

plot=.true. ! to the record # read
else ! from the file, IC.dat,
plot=.false. ! the initial conditions.

endif
type 20

20 format(5x,'Do you want plane section plots ? ',$)
accept 15,ans
if((ans.eq.'y').or.(ans.eq.'Y')) then

If so, the state vector
plane=.true. ! will be written to file

else ! section.dat;n twice each
plane=.false. ! orbit as y passes zero.

endif
open(unit=10,file='ic.dat',status='old')

1 read(10,25,end=100) (rO(i),i=1,6),xtu
! input initial pos, vel, tf

25 format(7fl0.5) ! in Km, m/sec, T.U.
type *,'inputs ',(r0(i),i=1,6),xtu ! echo back input
do i=1,3
rO(i)=rO(i)/9.378d+03 ! converts Km to D.U.
rO(i+3)=rO(i+3)/9.378d+06*4.383d+03 ! converts

enddo ! m/sec to D.U./T.U.
do i=1,6

s(i,l)=rO(i) puts initial pos and vel in s
dr(i)=O. , initialize delta state vector
drm(i)=O. ! initialize max delta state

enddo
s(4,1)=rO(4)+1.Od+OO-rO(2) changes xdot to Px
s(5,1)=rO(5)+rO(1) changes ydot to Py
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norb=O !orbit counter0nxt =0 haming initialization flag
n=6 * of equations of motion
h=1.Od-04 !delta t, time step for integration
t=0.Od+00 !set initial time = 0
tlast=O. !time at end of last orbit
tstep=.01 time step for print interval
nsteps=xtu/h !lets integration go for x T.U.
tp=O. !time for next print
call haming(nxt) !initialize haming
if (nxt .eq. 0) then

type *, 'haming failed to initialize'
stop

endif
if(plot) open(unit=11,file='state.dat' ,status='new')
if (plane)
*open(unit=12,file='section.dat' ,status'lnew')
if(plot) write(11,30)

* ~t, (s (i, nxt) ,i=l, 3), (ds(i, nxt) ,i=1, 3)
30 format (lx,7e11.4)

do it=1,nsteps
do i=1,3

r(i)=s(i,nxt) !save old position vector
r(i+3)=ds(i,nxt) !save old velocity vector

enddo
call haming(nxt) !integrate for new

*! position and velocity
if(t.ge.tp) then ! print state vector
tp=tp+tstep ! set next print time
if(plot) write(11,30)

* t,(s(i,nxt),i=1,3) ,(ds(i,nxt),i=1,3)
endif
r2=s (1,nxt) *s(1,nxt )+s(2, nxt) *s(2, nxt)

* +s(3,nxt)*s(3,nxt)
if(r2.ge.1) then

type *,Iorbitl,norb,' beyond 1 D.U.'
if(plot) write(11,30)

* t,(s(i,nxt),i=1,3), (ds(i,nxt),i=1,3)
if(plot) close(11)
if(plane) close(12)
go to 1I new initial conditions

endif
phoboss(l,nxt)*s(1,nxt)/1.326e-~6

* +s(2,nxt)*s(2,rnxt)/2.072e-6
* +s(3,nxt)*s(3,nxt)/1 .005e-6
if(phobos.le.l.) then

type *,Iorbitl,norb, t ends in collision with
*Phobos'

if(plot) write(11,30)
* t, (s(i,nxt),i=1,3), (ds(i,nxt) ,i=1,3)
if(plot) close(11)
if(plane) close(12)

go to 1I new initial conditions
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endif
do i=1, 3
dr(i)=abs(s(i,nxt)-r(i))! change in position
dr(i+3)=abs(ds(i,nxt)-r(i+3)) !change in velocity
if(dr(i).gt.drm(i)) drm(i)=dr(i) ! max delta r
if(dr(i+3).gt.drm(i+3)) drm(i+3)=dr(i43) ! max

!delta v
enddo
if(((s(1,nxt).lt.O.Od+OO).and.(r(1).gt.O.Od+OO)).or.
* ((s(l,nxt).gt.O.Od+OO).and.(r(l).lt.O.Od+OO)))

*then

type *,'passing x = 0, xdot l ,ds(1,nxt),' y =I
* S(2,nxt)

if(ds(1,nxt).gt.0) then
norbnorb+1 increment orbit count
period= (t-t last) *4383.
t last=t
type *,'period =',period,' seconds for orbit'

* , norb
endif
if(plot) write(11,30)

* ni t,(s( i, nxt) ,i=1 ,3), (ds (i, nxt) ,i= , 3)

if(((s(2,nxt).lt.O.Od+O0).and.(r(2).gt.0.Od+0O)).or.
* ((s(2,nxt).gt.0.Od+0O).and.(r(2).lt.O.Od+OO)))

*then

type *,'passing y = 0, ydot = ',ds(2,nxt),' x =I
* ,S(1, nxt)

if(plot) write(11,30)
* t, (s(i,nxt),i=1,3) ,(ds(i,nxt) ,i=1,3)
if(plane) write(12,30)

* t,(s(i,nxt) ,i=1,3), (ds(i,nxt),i=1,3)
endif
if(((s(3,nxt).JIt.O.Od+OO).and.(r(3).gt.O.Od+0O)).or.
* ((s(3,nxt).gt.0.Od+OO).and.(r(3).lt.O.Od+OO)))

*then

type *,'passing z =0, zdot = ',ds(3,nxt),' x =I
* ,s(l, nxt)

if(plot) write(11,30)
* t,(s(i,nxt),i=1,3),(ds(i,nxt),i=1,3)

endif
if(norb.ge.1) then !check if orbit closed

closed=. true.
do i=1,3

if(abs(rO(i)-s(i,nxt)).gt.drm(i))
* closed=.false.

if(abs(rO(i+3)-ds(i,nxt)).gt.drm(i+3))
* closed=.false.

enddo
if(closed) then

type *,'orbit closed, * orbits = ',norb
if(plot) write(11,30)

* t,(s(i,nxt),i=1,3),(ds(i,nxt),i=1,3)

49



if(plot) close(11)
if(plane) close(12)
go to 1 ! new initial conditions

endif
endif

enddo
if(plot) write(l1,30)

t,(s(i,nxt),i=1,3),(ds(i,nxt),i=1,3)
if(plot) close(11)
if(plane) close(12)
go to 1 new initial conditions

100 stop
end

subroutine haming(nxt)
c

c haming is an ordinary differential eqns integrator
c it is a fourth order predictor-corrector algorithm
c which means that it carries along the last four
c values of the state vector, and extrapolates these
c values to obtain the next value (the prediction part)
c and then corrects the extrapolated value to find a
c new value for the state vector.
c
c the value nxt in the call specifies which of the 4
c values of the state vector is the "next" one.
c nxt is updated by haming automatically, and is zero on
c the first call
c
c the user supplies an external routine rhs(nxt) which
c evaluates the equations of motion
c

common /ham/ x,s(6,4),ds(6,4),errest(6),n,h
double precision x,s,ds,errest,h,hh,xo,tol

c
c all of the good stuff is in this common block.
c x is the independent variable ( time )
c s(6,4) is the state vector- 4 copies of it, with nxt
c pointing at the next one
c ds(6,4) are the equations of motion, again four copies
c a call to rhs(nxt) updates an entry in ds
c errest is an estimate of the truncation error -
c normally not used
c n is the number of equations being integrated - 6 here
c h is the time step
c

tol = 0.O000000001d+O
c switch on starting algorithm or normal propagation

if(nxt) 190,10,200
c
c this is hamings starting algorithm .... a predictor -
c corrector needs 4 values of the state vector, and you
c only have, one- the initial conditions.
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c haming uses a Picard iteration (slow and painful) to
c get the other three.
c if it fails, nxt will still be zero upon exit,
c otherwise nxt will be 1, and you are all set to go
C

10 xo = x
hh = h/2.Od+00
call rhs(1)
do 40 1 = 2,4
x = x + hh
do 20 i 1,n

call rhs(l)
x = x + hh
do 30 i =1,ni

30 s(ii,l) =s(i,1-1) + h*ds(i,1)
40 call rhs(l)

jSW= -10
50 isw = 1

do 120 i = 1,n
hh = s(i,1) + h*( 9.od+00*ds(i,1) + 19.Od+00*ds(i,2)
1 - 5.Od+00*ds(i,3) + ds(i,4) )/24.0d+00
if( dabs( hh - s(i,2)) .lt. tol )go to 70
isw = 0

70 s(i,2) = hh
hh = s(i,i) + h*( ds(i,1) + 4.Od+00*ds(i,2) +

* ds(i,3))/3.Od+OO
if( dabs( hh-s(i,3)) Ilt. tol ) go to 90
isw = 0

90 s(i,3) = hh hh=s(i,1)+h*(3.Od+00*ds(i,1)
* +9. 0d+0~ds (i, 2) +9. Od+00*ds (i, 3)

I + 3.Od+00*ds(i,4) ) / 8.0d+00
if( dabs(hh-s(i,4)) .lt. tol )go to 110
isw = 0

110 s(i,4) = hh
120 continue

x =xo

do 130 1 = 2,4
x x +h

130 call rhs(l)
if(isw) 140,140,150

140 jsw = jsw + 1
if(jsw) 50,280,280

150 x = xo
isw = 1
jsw = 1
do 160 i1 1,n

160 errest(i) =0.0

nxt = 1
go to 280

190 jsw = 2
nxt = iabs(rixt)
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C this is hamings normal propagation loop -

c
200 x = x + h

npl = mod(nxt,4) + 1
go to (210,230),isw

c permute the index nxt modul, 4
210 go to (270,270,270,220),nxt
220 isw = 2
230 nm2 = mod(npl,4) + 1

nml = mod(nm2,4) .
npo = mod(nml,4) +

c
C this is the predirtor part,
C

do 240 i 1,n
ds(i,nm2) = s(i,npl + 4 rOd+0 h*( 2.-0d+0'ds(i,npo) -

I ds(i,nml) 4 2.Od+OO'ds(i,nm2) ) '.0d+00
240 s(i,npl) = ds(i,nm2) 0.925619835*errest(i)

c
c now the corrector - fix up the extrapolated state
c based on the better value of the equations of motion
C

call rhs(npl)
do 250 i = 1,n
s(i,npl) = ( 9.0d+00*s(i,npo) - s(i,nm2) + 3.0d+00*h*(
1 ds(i,npl) + 2.0d+00*ds(i,npo) - ds(i,nml))) / 8.0d+00
errest(i) = ds(inm2) - s(i,npl)

250 s(i,npl) = s(i,npl) + 0.0743801653 * errest(i)
go to (260,270),jsw

260 call rhs(npl)
270 nxt = npl

280 return
end

subroutine rhs(nxt)
c
c rhs contains the differential equations of motion.
c the basic function of rhs is to calculate the
c equations of motion (ds = f(s,t)) from the given
c current state (stored in s) and the time t.
c the state vector,s, is defined as follows:
c s(1-3,nxt) are the x,yz components of the position
c vector,r. s(4-6,nxt) are the generalized momenta, Px,
c Py, Pz.
c
c the haming common
c

common /ham/ t,s(6,4),ds(6,4),err(6),n,h
double precision t,s,dserr,h
double precision

* r ,r2,r3,r4,r5,r7,x,x2,y,y2,z,z2,Px,Py,Pz
double precision

r2x,r2y,r2z,xy,yz,Ixx,Iyy,Izz,I1,12,I3,It,mO,ml
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EVALUATE THE EQUATIONS OF MOTION

m4=1.541O36375d-08! M.U.
C=. Od+OO-ml M. U.
T,:=m~'6.!i53941736d-O7 !M.UJK'D.U.'

Iyy=ml*4.6619O4792d-0O7 M.U.*D.'. 2

Izz~mr1!'6.797057187d-O7 M.U.*D.U.2'
: 1=-TXX+Iyy+Izz
':2=Ixx-1:yy+Izz
13=Ix,.c4Iyy-Tzz
It=T.x-x+Iyy+Izz
r2=s ( 1,nxt)t*5(l1, nxt )+s (2 ,nxt) *5 (2 ,nxt)

* +s (3;,nrxt) *s (3, nxt)
r=dsqrt(r2)
r3=rr2
r4=r2 *r2
r5=r3 *r2
r7=r3*r4
xy=s (i~,nxt)*'s(C2 ,nxt)
yz=s (2, nxt) *s(3,nxt)
r2z=r2*s(l1,nxt)
r2y=r2:*s(2,nxt)0 r2zz=r2*s(3 ,nxt)
x2=s (1,nrxt) *5(1,nxt)
y2=s (2, nxt) *5(2, nxt)
z2=s (3, nxt) *s(3,nxt)
ds(1, nxt) = s(4 ,nxt )+s( 2,nxt) -1. d+OO
ds(2,nxzt) =sk(5,nxt)-s(1,nxt)
ds(3,nxt) = s(6,nxt)
ds (4, nxt) = s (5, nxt ) mO* (s(1, nxt )-3. Od+OO*xy

* +1 .5d+OO*r2x).m1*s(1,nxt)/r3+7.5d-O1*It*s(1,nxt)/r5
-7.5d-01*s(1,nxt)/r7*( (5.Od+OO*x2-2.Od+OO*r2)*I1

* +5.od+00*y2*i2+5.0d+OO*z2*I3)
ds(5,.nxt) = -s(4, nxt )+mO* (1 .Od+00-4 . d+OO*s (2, nxt)

* +7. 5d-01*It*s(2 ,rxt) /r5-7.5d-O1*s(2,nxt) /r7*
* ((5.od+OO*y2-2.*r2)*I2+5.Od+OO*x2*II
* +5.Od+OO*z2*I3)

ds (6, nxt) = -mO* (s(3, nxt )-3. Od+OO*yz+1 .5d+OO*r2z) -
* ml*s(3,nxt)/r3+7. 5d-O1*It*s(3,nxt) IrS
* 7.5d-01*s(3,nxt)/r7*( (5.Od+OO*z2-2.Od+OO*r2)*13
* +5. od+00*x2*Il+5 . d+OO*y2*I2)

return
end
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